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Abstract. Asset price dynamics can be explained by means of a mathematical

model. The problem is that these models simulate real situations, which are not always
attainable. The fact that real markets are characterized by inadequate information is one of
the challenging issues that mathematical models must solve as they are compelled to make
assumptions about the financial market.
This paper aims to introduce and create a unique Markov model for incomplete information
in order to address these deficiencies and solve the portfolio optimization problem while
taking pricing and risk minimization management into account. We assume that trading in
securities occurs in discrete time increments. Investors can trade in securities and track
their short-term pricing. We make the following assumptions: short-selling is not permitted
on the market, all assets have equal selling and buying prices, trading costs apply, and
investors can buy and sell an infinite number of shares on an arbitrage-free market. We
suggest the construction of an observer for partial information to address the portfolio
optimization problem. The ideal portfolio and the problem observer are the results of the
process. We provide the formulae for recovering the important variables. We can
recover the observation kernel from the resulting observer, which is understood to be the
manager's intuition during the decision-making process. This is the main result of this
paper. To the best of our knowledge, this is the first time that a solution of this kind for
portfolio optimization using partial data has been proposed in the literature. Under these
assumptions, a Markov model is used in a numerical example that demonstrates the
effectiveness and use of the suggested approach for creating workable portfolio models.

Keywords: Portfolio, observer design, Markov chains, optimization.

JEL Classification: G11, C61, C69

107
DOI: 10.24818/18423264/56.4.22.07


Administrator
Typewritten Text
DOI: 10.24818/18423264/56.4.22.07


Lesly Ortiz-Cerezo, Alin Carsteanu, Julio B. Clempner

1.Introduction

1.1.Brief review

The Markowitz single period mean-variance portfolio [18] is defined as a model
able to maximize the terminal wealth while, in the meantime, minimize risk employing
the variance as a criterion. The goal is to make possible that an investor looks for the
highest return by establishing a tolerable risk level. The model was extended to support
continuous-time model based on the geometric Brownian motion represented by
differential equations. However, there exists several limitations in the employment of
continuous-time models because certain parameters are discrete: actions (controls),
interest rates, appreciation, and volatility rates, etc. These parameters are insensible and
can produce radical changes in the behavior of the market. Markets are ruled by trends,
which are perceived as tendencies of securities to move in a particular direction over
time. Investors try to predict securities trends using mathematical models, which
identify tendencies when the price reaches support and resistance levels over time.
For solving these problems, we formulate the Markowitz’s single period mean-variance
portfolio as a system of stochastic difference equations whose variables are represented
by a discrete-time Markov chain. We focus on a class of discrete-time Markov
mean-variance portfolio model and compute the portfolio policy that minimizes the
overall risk given a fixed expected return.

1.2.Related work

There is large body of literature on portfolio optimization for Markov chains
with constraints. For a survey in the effects of transaction costs on portfolio optimization
see [22] and [11]. There is large body of literature on portfolio optimization for Markov
chains with constraints. Sanchez et al. [24] suggested a new mean-variance customer
portfolio optimization algorithm for a class of ergodic finite controllable Markov chains.
Sanchez et al. [23] improved the work presented in [24] proposing a recurrent
reinforcement-learning approach according to an actor-critic architecture subject of a
penalty regularized expected utilities [7]. For computing the mean-variance client
portfolio with transaction costs in controlled partially observable Markov decision
processes, Asiain et al. [2] proposed a reinforcement-learning framework. For
continuous-time discrete-state Markov decision processes, Garcia-Galicia et al. [16]
took into account a continuous-time mean-variance portfolio with transaction costs
comprising temporal penalization. Dominguez and Clempner [14] used the
extraproximal technique to solve the multi-period Markowitz's portfolio optimization
issue. For the purpose of financial portfolio management, Garcia-Galicia et al. [15]
examined the problem of policy optimization in the context of continuous-time
reinforcement learning. The portfolio problem aims to redistribute a fund among various
financial assets. Risk, return, and transaction cost were the three objectives of the
tri-objective portfolio optimization model given by Meghwani and Thakur [19]. They
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also suggested an algorithm that can handle equality constraints successfully without the
need for any constraint management techniques. Options in literature can be found

depending on the subject [1, 12, 13, 17, 25, 21, 20].

1.3.Main results
This research provides a market model-based approach to the portfolio
optimization issue that allows for the formulation of securities returns and risk
mitigation strategies as well as performance monitoring. We assume that the trading of
securities (tradable financial assets, including stocks, bonds, and derivatives) occurs in
discrete time increments. Investors can trade in securities and track their short-term
pricing. The investor makes decisions regarding the makeup of his portfolio based on
data from observed securities prices. When there is insufficient market information, we
provide a solution. The investor begins with a base amount to purchase securities, and
money imports and exports are prohibited. The value of the portfolio will thus only
fluctuate as a result of the rate of increase or decrease for each security.
The following is a summary of the main results:
e Considers the problem of portfolio selection with transaction costs.
e For such problems, the optimal portfolio is computed very rapidly using a proximal
algorithm.
Deals with incomplete information, transaction costs and arbitrage-free market.
e Proposes a new auxiliary variable, which stands for the product of the observer and
the (prior) distribution vector.
e Conceptualizes the observer design as the product of the policy and observation
kernel which denotes the relationship between the real and the estimated state.
e Interprets managers' intuition in making decisions from the generated observation
kernel. This is paper's key finding.
e Provides a powerful resolution to the problem, by combining a financial
mathematical model with rising computer power.

1.4.0rganization of the paper

The remaining sections of the paper are structured as follows. The single-period
portfolio selection issue is discussed in the next section. With regard to partially
observable Markov theory and the formulation of the portfolio issue, Section 3 discusses
the portfolio model with imperfect information. Section 4 offers a portfolio solution
approach for partial data that takes transaction costs and arbitrage-free into account. In
Section 5, a numerical example is provided. Section 6 details our findings and closing
remarks.
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2.Portfolio model for incomplete information

2.1.Partially observable Markov chains

Let S be a finite state space and Y = {y,,...,ym} the set of observations
(pseudostates) [10]. If at the time ¢ € [0,T] the state s(t) =s; is possible then
with probability q,; the pseudostate y,, appears. The control goal for partially
observable Markov chains has the same structure as in the case of totally observable
states, but the sets of feasible strategies are different.
We consider finite controllable partially observable Markov chains with utility u
given by M ={S,A,P,Y,Q,Qy, Py, u} . Although we believe that their states s are
unobservable, we can nonetheless observe their pseudostates y from a set Y, such that
[Y|=M, |S|=N and N = M . These states appear according to following the
rule: if at the time ¢ the Markov chain is in the state s; then the pseudostate 1y,
will appear at the same moment with probability ¢,,; which does not depend on the
history. Given y(t) =y, and a(t) = ay ,then s(t) =s; will have a probability
miik = P(s@®) =sily(®) =ymat) =ar), m=1,M , i=1,N, k=1K
that denotes the relationship between the state and the observation when an action
ax € A(s;) is chosen at time ¢ . The probabilities of q;,); are recovered from the
observation kernel, which is a stochastic kernel on Y, recovered from Q =

[Gmiiklm=Tp1,i=TN k=TK -
In M ={S,A,P,Y,Q,0Q Py,u} we have that S is a finite state space; A is a finite
control space; P = [pj”k] is a controlled transition matrix; Y is the observation
set, which takes values in a finite space {1,...,M}, M €N ; Q = [qmilpn-157i=TF
denotes the observation kernel is a stochastic kernel on Y such that ¥M_, qm)i = 1
forall i = 1,_N, which means that the each state i is observable with probability one;
Qo = [9myilm=1a1=Tw denotes the initial observation kernel, is a stochastic kernel on
Y given S ; Py is the (a prior) initial distribution;  Ujjmx @ SXS XYV XA -
R is the utility function. The payoff function u;,,; could depend upon the current
state s; , the estimated state y,, and the action a; taken.
The partially observable system dynamics at time t is given by
(s(0),¥(0),a(0),s(1),y(1),a(1),...) €H := (SYA)",
where s(0) has a given distribution P(s(0) =s;) and {a;} 1is a control
sequence in A determined by a control policy. To define a policy, we cannot use the
(unobservable) states s(0),s(1),... . Then, we introduce the observable histories
hy :=((0)€Hy, and h; :=(s(0),y(0),a(0),...,y(t—=1),a(t—1),y(t)) €
H, forall t=1 and H; :=H;_{AY if t>1 . Then, a policy is defined as a
sequence {nk|m(t)}. The collection of all policies is denoted by II.

110



Optimal Constrained Portfolio Analysis for Incomplete Information and Transaction
Costs

A sequence of random stochastic matrices [1(n) = {”k|m(t)}k—ﬁm—m is said to

be a randomized control policy such that for any random action 7y, (t) attime ¢
K

k=1
For any random action {nk|m(t)} — _ the conditional transition probability

1.K,m=1,M
matrix

P(”k|m(t)) [ |1(7Tk|m( ))]l]=1,_N

can be defined as follows

K M
Pyi({mem®}) = Z z P(s(t+1) =sj|s(®) = s, a®) = ax) -
k=1m=1

K

P(5() = 5ilY(®) = V) Tm(®) = ) Z Pk im0

k=1m=

2.2.Formulation of the portfolio problem

We are considering a portfolio problem where, at moment t = 0, the state
s(0) has a distribution P, as well as the state y(0) is recovered from
Qo(y(0)|s(0)). If at moment ¢t the state of the system is s(t) and the control
a(t) € A is applied, then each of policy is allowed to randomize, with distribution
Tgm(t) , over the pure action choices a(t) €  A(s(t)), m =1,M and
k =1,K . These options generate the utility U, . The system makes an effort to
minimize the associated one-step reward. Thereafter, the system makes a transition to
the state s(t) = s; following to the transitions given by P([nk|m(t)}k:1'_K’m:1'_M) .
Next, the unobserved state y(t) is generated by the kernel Q(y(t)|s(t)) .
Following the resulting reward, the system computes the policy 7y, (t + 1) for the
next selection of the control actions.
The reward U of a portfolio is

M

N K M N K
535S tenstminanti = >SS Vs
4 Z€Zgdm
m=1i=1k=1j=1 =1i=
such that Vi, = Zj 1JijmiPjjik and z = [Zlmk i=TN-m=Tik=1Tx 15 defined as

the joint policy given by
Zimk = 7Tk|m‘1m|ipi
Considering an ergodic Markov chain [7], for any fixed collection of stationary
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strategies Ty |m(t) = My, we have that P(s(t +1) = sj) - P;, t—- o . Then,
for any stationary policy 7y, the distributions P(sj) exponentially converge to

P(s;) = P; such that
Z (Z 2 p]|lk‘lm|l”k|m>

m=1k=1
Let us denote by p,, the probablhty to observe the estimated state m , as follows

= ’Z: <i(qm|iﬂk|m)> Py

The reward function U in the stationary regime is represented by
M N K

U(o):= 2 z 2 VimkOmi Tk|m
m=1i=1 k=1
where V. . = ZjJijkpﬂik and the observer is defined as  0p; = qijmP;
Let Ogqm  be the set of admissible observers. An observer o* = {o,;} is optimal, if
it satisfies 0* := argmax,ep,,,, U(0) .
The portfolio optimization problem maximizes the mean value U(o) while

minimizing the variance Var(o) defined as follows
M N K

Var(o) = Vimk — U(0)]*Zimy — min

Finally, the mean-variance customer model of [18] is defined as follows
M N K

Y(0):=U(0) —% Var(o) = Z Z Z Vimk T jmOmi —

m=1i=1 k=1

M N K

Z ZZ imk — U(O) Zimk — Max
0€0

m=

1 k=1
where & is the rlsk—aversz parameter.

N | v

3.Portfolio solution method
3.1.Feasibility of Markowitz's portfolio
The joint policy Zimk = TkimOmi = TkimdmiP; belongs to  Zgqm, and
satisfies the constraints:
1) The matrix z :=[Zymk] € Zgam 1S a stationary policy that belongs to the
simplex
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SNMK .

M N K
z € RVMK - for zimi = 0 where Z z 2 Zimk = 1}
m=1i=1 k=1
N K
2,2, 7w =Fi>0
1=1 k=1

2) The variable Zz;nx € Zgqm satisfies the ergodicity constraints i.e.:
M K

[6ij — pjjiklZimk = 0,7 =1,...,N
1

M K
Zimk = qm|i Z Z Zy =0
=1 k=1

[6im — Gmyilzaxk =0, m=1,....M

&
Il

m=1

M=

k

Il
ey

NgE
N

~
]

[y

&
1l

1
Once the model (ergodic Markov decision process) is solved in order to recover the

quantities of interest we have that:

M K P
* * * _ k=1Zimk
P = Z Z Ziye and G = TH SR
— = 1=1 Lk=1Zilk
S

observer we must use the formula
) P

mi = 4] Im*ti
The resulting expression @y; is not trivial. The inaccurate knowledge about the system

—_—

To close, to get the optima

state, which is often gleaned intuitively, is represented by the matrix [q,*nli].
The policy Ty, constructed from 7y, , is given by

N
* — l *
T[klm - N Tkim
i=1
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The distribution is given by
N K
= Z Z Zimk

Using the Lagrange method, the mean-variance Markowitz portfolio ¥ (0) can be
re-written as follows:

L(o, Uo) Un+1, .uN+2,j)
M N K

M N K f
2
Z Z z Vimknk|m0mi - E [Vimk - Vimkﬂk|m0mi] Zimk +

m=1i=1 k=1 m=1i=1k=

N M K
Z ﬂO,j [(Z [611 p1|1k]ZLmk> eqj
j=1 m=1k=1
N K
+.“N+1( 22 Zimk = =1- eqN+1>
m=1

i=1 k=1

N M K
Z UN+2,j [(Z [6im — Qi|m]2i1k> - beq,N+1+j]
=

1=1k=1

3.2.Transaction costs

Let us consider @ = col(zym) andlet Aggm = Zgam- Each a; reprents
current portfolio holding of asset. Each time an investor buys or sells an asset an expense
is incurred. We study the case where the transaction cost to move from one asset to a
better one is penalized by a cost. In the work of Markowitz, the expenses associated with
trading equities, were excluded from his model. The importance of considering the
transaction cost in a new portfolio and in revising an existing portfolio are well
acknowledged. Transaction cost should be as low as possible. Thus, a portfolio manager
must carefully consider trading and its resulting cost.
We will define the behavior of an investor as a sequence (@y)neny Where there are
possible changes in the assets, such that «; # a; or holding the same asset, a; = q;
in order to maximize the utility and minimize the risk of the portfolio. We also consider
problems with transaction costs where the costs are paid on all transactions irrespective
of the volume of the transaction. They consist of brokerage commissions and transfer
fees. Then, at each step n € N the investor chooses to change or to stay in «a; € A .
The function 1 represents the function which determines the decision to change asset
a; . The change from an asset to a different one produces a transaction cost, which can
be defined as a function ¢ : A XA — R which can interpreted as a distance
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function where if @(a;, ;) = c(a;, ;) we have that c(a;, ;) =0 if a; =q;
or c(aja;) >0 if a; <a; .Inthe classical model for transaction costs is that there
are none, i.e., c(a;@;) =0 . Then, the function ¢@(a;,@;) can be reexpressed as
o(a;, ;) = 6(a;))c(a;, ;) where &(a;) € [0,1] is the costs for each transaction
proportional to the distance to move from «; to «@; and c(a@; ;) is the one-step
cost function.
The case (x;) —¥(x;) =0 is the advantage to change from «; to «@; and
{(a;) 1isthe weight the investor puts on his advantages to change from a given asset to
another. The advantages to change from «a; to «; are given by Z(a; ;) =
J(a) (W) —¥(a))) -
If any number of convex transaction costs and convex constraints are combined, the
resulting problem is convex. Linear transaction costs, as well as all the portfolio
constraints describe above, are convex. Such problems can be solved with great
efficiency, even for problems with a large number of assets and constraints. We have
that the general portfolio problem with transaction cost can be defined by
Y() ={aq €A : {(a)(W(a) —P(a)) = 8(a)c(an,ap)}
Then, the acceptance criterion to change or stay in the same process satisfies the
condition
((an)(w(an) - ¢(6¥n+1)) = 6(0!n)6(0!n, an+1)

After that, considering

an=a, §@c(aa’)=25ll(a—a)ll* and Z(a,a*):=—{[(x) —Pp(x7)]
we obtain

@ = argmax(~8,ll(a — a2 + Y G (@) — $(xID)

4.Numerical example

4.1.Description of the example

We suppose that a portfolio containing all risky assets and can be calculated by
considering the sum of the risk-free rate plus the excess return (market return minus
risk-free rate) multiplied by & , the sensitivity of the portfolio to market movements

Y(0):=U(o) —% Var(o) - max

where ¢ is the risk-aversion parameter [3].

We assume that investors target the portfolio with the lowest risk over the same
one-period horizon and anticipate returns with the same probability distribution. We
believe that the markets are in equilibrium and that there has been no inflation or change
in interest rates. To make trading more realistic, we take into account transaction costs
and the fact that investors can trade an unlimited number of shares on an arbitrage-free
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Figure 3. Portfolio’s functional value Figure 4. Policies' convergence

4.2.Computing a single period portfolio

Considering € =1.1x 1072 and y = 1.3 x 10™* and the resulting values
for the observer design op,; , the observability matrix q,,; and optimal portfolio
Tgm are given by
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0.0214 0.0354 0.0238 0.0398 0.0002 0.0477 0.4158 0.5842
0.0287 0.0353 0.0099 0.0458 0.0283 0.0212 0.1927 0.8073
e —|00584 00172 00252 00270 0.0056 00362 _. _[0.6100 03900
im —10.0403 0.0369 0.0010 0.0042 0.0552 0.0290| ~*™ ™ ]0.5792 0.4208
0.0196 0.0315 0.0183 0.0242 0.0338 0.0320 0.6434 0.3566
0.0269 0.0238 0.0153 0.0473 0.0052 0.0486J 0.2862 0.7138
0.1272 0.1695 0.3445 0.2419 0.1229 0.1609 0.1952
[0.2103 0.2089 0.1013 0.2218 0.1973 0.1425| [0.1801 |
. _|0.1413 0.0583 0.1485 0.0063 0.1149 0.0915| , |0.0935]|
mi = (02363 02709 0.1594 0.0249 0.1521 0.2831] Pm 7~ |o.1883|
0.0012 0.1671 0.0331 0.3312 0.2123 0.0312 0.1283J
0.2837 0.1253 0.2133 0.1739 0.2005 0.2909 0.2146

Figure 1 shows the convergence of the utility, Figure 2 shows the variance and Figure 3
shows the convergence of the functional. Figure 4 shows the convergence of the

portfolio strategies.

4.3.Computing the efficient frontier

The main goal of the investor is to gain a given return. A rational investor makes
an effort to identify the portfolio with minimal risk which satisfies this goal. For
fulfilling this goal, we outline all the possible portfolios of risky assets in a
mean-variance diagram, where the points represent the expected returns U and the
risk Var (variance) of the portfolios. Furthermore, we call the set of all points
Var(o*) = U(o") the efficient frontier and has the shape of a hyperbola (Pareto front

[6]) see Figure 5.

A portfolio is called mean-variance efficient (or just efficient), if for a given volatility
there is no portfolio with a higher return such that U(0*) < U(o) and Var(o*) =
Var(o). It is the upper boundary of all portfolios in the mean-variance diagram from
Figure 5. According to our paradigm, the rational investor is specifically seeking the
following set of portfolios: They both increase the expected return while minimizing the
risk for a given return.
The portfolio on the efficient frontier with the lowest volatility is called
minimum-variance portfolio (red circle in Figure 6). If a risk-free asset exists (zero
volatility) then the set of mean-variance efficient portfolios, established by the risk-free
and risky assets, is the tangency point on the efficient frontier (blued circle in Figure 6).
Considering € =5.5%107° and y = 1.3 x 1073 and the resulting values for the
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Figure 6. Tangency point

Figure 7. Strategies' Convergence

*

observer design 0., ,

are given by

0.0838 0.0002 0.0002
. 0.1128 0.0483 0.0002
im = 10,0002 0.0002 0.0969
[0.1901 0.0002 0.0002
0.0719 0.0002 0.0869

[0.0002 0.0378 0.0731
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0.0002
0.0002
0.0002
0.0002
0.0002
0.0002

the observability matrix g, ; and optimal portfolio 7y,

0.0002 0.0746 03341 0.6659
0.0002  0.0002 0.7494 0.2506
0.0002 0.0754]| k™= [05000 0.5000]
0.0002  0.0002 lo.sooo 0.5000J
0.0002  0.0002 0.5833 0.4167

0.0002 0.0436} [0.6664 0.3336}
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0.0013 0.5264 0.6966 0.0012 0.9948 0.4505 0.4590
0.2436 0.0013 0.2984 0.0012 0.0010 0.0013 0.0869
« _ 104716 0.0013 0.0012 0.5599 0.0010 0.5445 « _ |0.2576
Tmi = 10,0013 00013 0.0012 0.0012 0.0010 0.0013| Pm = |0.0012
0.0013 0.0013 0.0012 0.0012 0.0010 0.0013 0.0012
0.2810 0.4686 0.0012 0.4355 0.0010 0.0013 l0.1941

Figure 7 shows the convergence of the portfolio strategies.

5.Conclusion and future work

Financial market research has grown in importance as a result of the use of
advanced mathematical techniques in decision-making. The significance of using the
right modeling policy to address the portfolio optimization problem has expanded due to
the rapidly expanding variety of financial assets.
A Markovian model of the financial market was presented. A brief explanation of the
model was followed by a solution to the problem of incomplete information. We take
into account a one-period model in which trading in securities occurs in discrete time
increments. Securities are traded by investors, who track their short-term pricing. We
assumed that the market does not permit short selling, that all assets have equal selling
and purchasing prices, that there are expenses associated with trading, and that investors
can transact in an infinite number of shares on an arbitrage-free market. The use of
partially observed Markov chains has been used to resolve all of these problems.
Within the parameters of the study, we introduced a unique method for partially
observed Markov chains based on observer design. As far as we are aware, this is the
first piece of work that demonstrates how to create an observer for missing data. The
product of the observer and distribution vector was added as a new variable. To get the
necessary variables, we developed the equations. The resultant gy, is a non-trivial
solution to the portfolio optimization issue and is regarded as the manager’s intuition
during the decision-making process. In many decision-making processes related to
strategic management, intuitive rationality is seen as being crucial.
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