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1.Introduction 
1.1.Brief review 
The Markowitz single period mean-variance portfolio [18] is defined as a model 

able to maximize the terminal wealth while, in the meantime, minimize risk employing 
the variance as a criterion. The goal is to make possible that an investor looks for the 
highest return by establishing a tolerable risk level. The model was extended to support 
continuous-time model based on the geometric Brownian motion represented by 
differential equations. However, there exists several limitations in the employment of 
continuous-time models because certain parameters are discrete: actions (controls), 
interest rates, appreciation, and volatility rates, etc. These parameters are insensible and 
can produce radical changes in the behavior of the market. Markets are ruled by trends, 
which are perceived as tendencies of securities to move in a particular direction over 
time. Investors try to predict securities trends using mathematical models, which 
identify tendencies when the price reaches support and resistance levels over time. 
For solving these problems, we formulate the Markowitz’s single period mean-variance 
portfolio as a system of stochastic difference equations whose variables are represented 
by a discrete-time Markov chain. We focus on a class of discrete-time Markov 
mean-variance portfolio model and compute the portfolio policy that minimizes the 
overall risk given a fixed expected return.  

 
1.2.Related work 
There is large body of literature on portfolio optimization for Markov chains 

with constraints. For a survey in the effects of transaction costs on portfolio optimization 
see [22] and [11]. There is large body of literature on portfolio optimization for Markov 
chains with constraints. Sanchez et al. [24] suggested a new mean-variance customer 
portfolio optimization algorithm for a class of ergodic finite controllable Markov chains. 
Sanchez et al. [23] improved the work presented in [24] proposing a recurrent 
reinforcement-learning approach according to an actor-critic architecture subject of a 
penalty regularized expected utilities [7]. For computing the mean-variance client 
portfolio with transaction costs in controlled partially observable Markov decision 
processes, Asiain et al. [2] proposed a reinforcement-learning framework. For 
continuous-time discrete-state Markov decision processes, Garcia-Galicia et al. [16] 
took into account a continuous-time mean-variance portfolio with transaction costs 
comprising temporal penalization. Dominguez and Clempner [14] used the 
extraproximal technique to solve the multi-period Markowitz's portfolio optimization 
issue. For the purpose of financial portfolio management, Garcia-Galicia et al. [15] 
examined the problem of policy optimization in the context of continuous-time 
reinforcement learning. The portfolio problem aims to redistribute a fund among various 
financial assets. Risk, return, and transaction cost were the three objectives of the 
tri-objective portfolio optimization model given by Meghwani and Thakur [19]. They 
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also suggested an algorithm that can handle equality constraints successfully without the 
need for any constraint management techniques. Options in literature can be found 
depending on the subject [1, 12, 13, 17, 25, 21, 20]. 

 
1.3.Main results 
This research provides a market model-based approach to the portfolio 

optimization issue that allows for the formulation of securities returns and risk 
mitigation strategies as well as performance monitoring. We assume that the trading of 
securities (tradable financial assets, including stocks, bonds, and derivatives) occurs in 
discrete time increments. Investors can trade in securities and track their short-term 
pricing. The investor makes decisions regarding the makeup of his portfolio based on 
data from observed securities prices. When there is insufficient market information, we 
provide a solution. The investor begins with a base amount to purchase securities, and 
money imports and exports are prohibited. The value of the portfolio will thus only 
fluctuate as a result of the rate of increase or decrease for each security. 
The following is a summary of the main results: 
• Considers the problem of portfolio selection with transaction costs. 
• For such problems, the optimal portfolio is computed very rapidly using a proximal 

algorithm. 
• Deals with incomplete information, transaction costs and arbitrage-free market. 
• Proposes a new auxiliary variable, which stands for the product of the observer and 

the (prior) distribution vector. 
• Conceptualizes the observer design as the product of the policy and observation 

kernel which denotes the relationship between the real and the estimated state. 
• Interprets managers' intuition in making decisions from the generated observation 

kernel. This is paper's key finding. 
• Provides a powerful resolution to the problem, by combining a financial 

mathematical model with rising computer power. 
 
1.4.Organization of the paper 
The remaining sections of the paper are structured as follows. The single-period 

portfolio selection issue is discussed in the next section. With regard to partially 
observable Markov theory and the formulation of the portfolio issue, Section 3 discusses 
the portfolio model with imperfect information. Section 4 offers a portfolio solution 
approach for partial data that takes transaction costs and arbitrage-free into account. In 
Section 5, a numerical example is provided. Section 6 details our findings and closing 
remarks. 
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2.Portfolio model for incomplete information 
2.1.Partially observable Markov chains 
Let  ܵ  be a finite state space and ܻ = ,ଵݕ} . . . ,  ௠}  the set of observationsݕ

(pseudostates) [10]. If at the time  ݐ ∈ [0, ܶ]  the state  (ݐ)ݏ =  ௜  is possible thenݏ
with probability  ݍ௠|௜  the pseudostate  ݕ௠  appears. The control goal for partially 
observable Markov chains has the same structure as in the case of totally observable 
states, but the sets of feasible strategies are different. 
We consider finite controllable partially observable Markov chains with utility  ݑ  
given by  ܯ = {ܵ, ,ܣ ܲ, ܻ, ܳ, ܳ଴, ଴ܲ,  are  ݏ Although we believe that their states . {ݑ
unobservable, we can nonetheless observe their pseudostates ݕ from a set ܻ, such that  |ܻ| = |ܵ|  , ܯ = ܰ  and  ܰ =  These states appear according to following the . ܯ
rule: if at the time  ݐ  the Markov chain is in the state  ݏ௜  then the pseudostate  ݕ௠  
will appear at the same moment with probability  ݍ௠|௜  which does not depend on the 
history. Given (ݐ)ݕ = (ݐ)ܽ  ௠  andݕ = ܽ௞ , then  (ݐ)ݏ = :  ௠|௜௞ݍ  ௜  will have a probabilityݏ = (ݐ)ݏ)ܲ = (ݐ)ݕ|௜ݏ = ,௠ݕ (ݐ)ܽ = ܽ௞) , ݉ = ܯ,1  ,  ݅ = 1, ܰ  ,  ݇ = 1,   ܭ
that denotes the relationship between the state and the observation when an action  ܽ௞ ∈  ௠|௜  are recovered from theݍ  The probabilities of . ݐ  is chosen at time  (௜ݏ)ܣ
observation kernel, which is a stochastic kernel on  ܻ , recovered from  ܳ  . ௠ୀଵ,ெ,௜ୀଵ,ே,௞ୀଵ,௄[௠|௜௞ݍ]=
In ܯ = {ܵ, ,ܣ ܲ, ܻ, ܳ, ܳ଴, ଴ܲ,  is a finite ܣ  ;we have that  ܵ is a finite state space  {ݑ
control space;  ܲ =  ௝|௜௞൧  is a controlled transition matrix;  ܻ  is the observation݌ൣ
set, which takes values in a finite space  {1, . . . , ܯ   ,{ܯ ∈ ℕ ;  ܳ =   ௠ୀଵ,ெ,௜ୀଵ,ே[௠|௜ݍ]

denotes the observation kernel is a stochastic kernel on  ܻ  such that ∑ ௠|௜ݍ = 1ெ௠ୀଵ  

for all ݅ = 1, ܰ, which means that the each state  ݅  is observable with probability one;  ܳ଴ = :  ௜௝௠௞ݑ   ;௠ୀଵ,ெ,௜ୀଵ,ே  denotes the initial observation kernel, is a stochastic kernel on  ܻ  given  ܵ ;   ଴ܲ  is the (a prior) initial distribution[௠|௜ݍ]   ܵ × ܵ × ܻ × ܣ →ℝ  is the utility function. The payoff function  ݑ௜௠௞ could depend upon the current 
state  ݏ௜ , the estimated state  ݕ௠  and the action  ܽ௞  taken. 
The partially observable system dynamics at time  ݐ   is given by  ((0)ݏ, ,(0)ݕ ܽ(0), ,(1)ݏ ,(1)ݕ ܽ(1), . . . ) ∈ :  ܪ =  ,ஶ(ܣܻܵ)
where  (0)ݏ   has a given distribution  ܲ((0)ݏ = (௜ݏ   and  {ܽ௧}   is a control 
sequence in  ܣ  determined by a control policy. To define a policy, we cannot use the 
(unobservable) states  (0)ݏ, ,(1)ݏ . ..  . Then, we introduce the observable histories  ℎ଴  : = ((0)ݕ) ∈ ଴ܪ   and  ℎ௧  : = ,(0)ݏ) ,(0)ݕ ܽ(0), . . . , ݐ)ݕ − 1), ݐ)ܽ − 1), ((ݐ)ݕ ݐ  ௧  for allܪ∋ ≥ 1  and  ܪ௧  : = ݐ  if  ܻܣ௧ିଵܪ ≥ 1 . Then, a policy is defined as a 
sequence  ൛ߨ௞|௠(ݐ)ൟ. The collection of all policies is denoted by ߎ. 
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A sequence of random stochastic matrices  ߎ(݊) = ൛ߨ௞|௠(ݐ)ൟ௞ୀଵ,௄,௠ୀଵ,ெ  is said to 

be a randomized control policy such that for any random action  ߨ௞|௠(ݐ)  at time  ݐ   ෍ߨ௞|௠(ݐ) = 1, ௞|௠ߨ ≥ 0, ݉ = 1,… ௄	ܯ,
௞ୀଵ  

For any random action  ൛ߨ௞|௠(ݐ)ൟ௞ୀଵ,௄,௠ୀଵ,ெ  the conditional transition probability 

matrix  ܲ൫ߨ௞|௠(ݐ)൯ = ൣ ௝ܲ|௜൫ߨ௞|௠(ݐ)൯൧௜,௝ୀଵ,ே 

can be defined as follows 

௝ܲ|௜൫൛ߨ௞|௠(ݐ)ൟ൯ = ෍ ෍ ܲ൫ݐ)ݏ + 1) = (ݐ)ݏ|௝ݏ = ,௜ݏ (ݐ)ܽ = ܽ௞൯ெ
௠ୀଵ

௄
௞ୀଵ ⋅ 

(ݐ)ݏ)ܲ = (ݐ)ݕ|௜ݏ = (ݐ)௞|௠ߨ(௠ݕ = ෍ ෍ ெ(ݐ)௞|௠ߨ௠|௜ݍ௝|௜௞݌
௠ୀଵ

௄
௞ୀଵ . 

 
2.2.Formulation of the portfolio problem 
We are considering a portfolio problem where, at moment  ݐ = 0, the state  (0)ݏ   has a distribution  ܲ , as well as the state  (0)ݕ   is recovered from  ܳ଴((0)ݏ|(0)ݕ).  If at moment  ݐ  the state of the system is  (ݐ)ݏ  and the control  ܽ(ݐ) ∈ (ݐ)௞|௠ߨ  is applied, then each of policy is allowed to randomize, with distribution  ܣ  , over the pure action choices  ܽ(ݐ)    ∈ ,((ݐ)ݏ)ܣ       ݉ = ܯ,1   and  ݇ = 1, These options generate the utility  ࣯௜௞ . ܭ  . The system makes an effort to 

minimize the associated one-step reward. Thereafter, the system makes a transition to 
the state  (ݐ)ݏ =  . (ൟ௞ୀଵ,௄,௠ୀଵ,ெ(ݐ)௞|௠ߨ൛)ܲ  ௜  following to the transitions given byݏ

Next, the unobserved state  (ݐ)ݕ   is generated by the kernel  ܳ((ݐ)ݏ|(ݐ)ݕ)  . 
Following the resulting reward, the system computes the policy ߨ௞|௠(ݐ + 1) for the 
next selection of the control actions. 
The reward  ࣯  of a portfolio is  ෍ ෍෍෍ܬ௜௝௠௞݌௝|௜௞ݍ௠|௜ߨ௞|௠ ௜ܲே

௝ୀଵ =௄
௞ୀଵ

ே
௜ୀଵ

ெ
௠ୀଵ ෍ ෍෍ ௜ܸ௠௞ݖ௜௠௞௄

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ →    ௭∈௓ೌ೏೘ݔܽ݉

such that ௜ܸ௠௞ = ∑ ௝|௜௞ே௝ୀଵ݌௜௝௠௞ܬ   and  ݖ  : = ௜ୀଵ,ே;௠ୀଵ,ெ;௞ୀଵ,௄[௜௠௞ݖ]   is defined as 
the joint policy given by  ݖ௜௠௞ = ௠|௜ݍ௞|௠ߨ ௜ܲ 
Considering an ergodic Markov chain [7], for any fixed collection of stationary 
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strategies  ߨ௞|௠(ݐ) = ݐ)ݏ௞|௠  we have that  ܲ൫ߨ + 1) = ௝൯ݏ → ௝ܲ,   ݐ → ∞ . Then, 

for any stationary policy  ߨ௞|௠  the distributions  ܲ൫ݏ௝൯  exponentially converge to  ܲ(ݏ௜) = ௜ܲ  such that  

௝ܲ = ෍൭෍ ෍݌௝|௜௞ݍ௠|௜ߨ௞|௠௄
௞ୀଵ

ெ
௠ୀଵ ൱ ௜ܲே

௜ୀଵ  

Let us denote by  ݌௠  the probability to observe the estimated state  ݉ , as follows  ݌௠ = ෍൭෍൫ݍ௠|௜ߨ௞|௠൯ே
௜ୀଵ ൱௄

௞ୀଵ ௜ܲ 
The reward function  ࣯  in the stationary regime is represented by ࣯(݋):= ෍ ෍෍ ௜ܸ௠௞݋௠௜௄

௞ୀଵ ௞|௠ேߨ
௜ୀଵ

ெ
௠ୀଵ  

where |jimk ijmk j ikV J p= å   and the observer is defined as  ݋௠௜ = ௜|௠ݍ ௜ܲ . 

Let ࣩ௔ௗ௠  be the set of admissible observers. An observer  ݋∗ = ∗௠௜݋} }  is optimal, if 
it satisfies  ݋∗  : = ௢∈ࣩೌ೏೘ݔܽ݉݃ݎܽ   . (݋)࣯
The portfolio optimization problem maximizes the mean value  ࣯(݋)   while 
minimizing the variance  ࣰܽ(݋)ݎ  defined as follows  ࣰܽ(݋)ݎ ≔ ෍ ෍෍[ ௜ܸ௠௞ − ௜௠௞௄ݖଶ[(݋)࣯

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ → ݉݅݊௢∈ࣩ  

 
Finally, the mean-variance customer model of [18] is defined as follows  (݋)ߖ:= (݋)࣯ − 2ߦ (݋)ݎࣰܽ	 = ෍ ෍෍ ௜ܸ௠௞ߨ௞|௠݋௠௜௄

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ 2ߦ− ෍ ෍෍[ ௜ܸ௠௞ − ଶ௄[(݋)࣯

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ ௜௠௞ݖ → ࣩ∋௢ݔܽ݉	

 

where  ߦ  is the risk-aversion parameter. 
 
3.Portfolio solution method 
3.1.Feasibility of Markowitz's portfolio 
The joint policy ݖ௜௠௞ = ௠௜݋௞|௠ߨ = ௠|௜ݍ௞|௠ߨ ௜ܲ   belongs to  ܼ௔ௗ௠  and 

satisfies the constraints: 
1) The matrix  ݖ  : = [௜௠௞ݖ] ∈ ܼ௔ௗ௠   is a stationary policy that belongs to the 

simplex  
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࣭ேெ௄  : = ൝ݖ ∈ ℝேெ௄  :    for ݖ௜௠௞ ≥ 0 where  ෍ ෍෍ݖ௜௠௞ = 1௄
௞ୀଵ

ே
௜ୀଵ

ெ
௠ୀଵ ൡ 

෍෍ݖ௜௟௞௄
௞ୀଵ = ௜ܲ > 0ே

௟ୀଵ  

2) The variable  ݖ௜௠௞ ∈ ܼ௔ௗ௠  satisfies the ergodicity constraints i.e.:  ෍ ෍[ߜ௜௝ − ௜௠௞௄ݖ[௝|௜௞݌
௞ୀଵ = 0ெ

௠ୀଵ , ݆ = 1, . . . , ܰ 

෍ݖ௜௠௞ =௄
௞ୀଵ ௜௟௞௄ݖ௠|௜෍෍ݍ

௞ୀଵ = 0ெ
௟ୀଵ  

෍෍[ߜ௟௠ − ௜௟௞௄ݖ[௠|௜ݍ
௞ୀଵ = 0ெ

௟ୀଵ ,݉ = 1, . . . ,  ܯ

Once the model (ergodic Markov decision process) is solved in order to recover the 
quantities of interest we have that: 
 

∗௞௜௠ߨ =
۔ۖەۖ
ۓ ∑∗௜௠௛ݖ ௜௠௛∗௄௛ୀଵݖ ݂݅ ෍ ௜௠௛∗௄ݖ

௛ୀଵ > 0
0 ݂݅ ෍ ௜௠௛∗௄ݖ

௛ୀଵ = 0 

 

௜ܲ∗ = ෍෍ݖ௜௟௞∗௄
௞ୀଵ

ெ
௟ୀଵ ∗௠|௜ݍ	݀݊ܽ	 = ∑ ∑௜௠௞∗௄௞ୀଵݖ ∑ ௜௟௞∗௄௞ୀଵெ௟ୀଵݖ 	 

To close, to get the optimal observer we must use the formula  ݋௠௜∗ = ∗௜|௠ݍ ௜ܲ∗ 
The resulting expression ݍ௠|௜∗  is not trivial. The inaccurate knowledge about the system 

state, which is often gleaned intuitively, is represented by the matrix ൣݍ௠|௜∗ ൧. 
The policy ߨ௞|௠∗ ,  constructed from ߨ௞௜௠∗ , is given by  ߨ௞|௠∗ = 1ܰ ෍ߨ௞௜௠∗ே

௜ୀଵ  
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The distribution is given by ݌௠∗ =෍෍ݖ௜௠௞∗௄
௞ୀଵ

ே
௜ୀଵ  

 
Using the Lagrange method, the mean-variance Markowitz portfolio (݋)ߖ  can be 
re-written as follows:  ܮ൫݋, ,଴ߤ ,ேାଵߤ ேାଶ,௝൯ߤ   ≔ ෍ ෍෍ ௜ܸ௠௞ߨ௞|௠݋௠௜௄

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ − 2ߦ ෍ ෍෍ൣ ௜ܸ௠௞ − ௜ܸ௠௞ߨ௞|௠݋௠௜൧ଶ௄

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ ௜௠௞ݖ + 

෍ߤ଴,௝ே
௝ୀଵ ൥൭෍ ෍ൣߜ௜௝ − ௜௠௞௄ݖ௝|௜௞൧݌

௞ୀଵ
ெ

௠ୀଵ ൱ − ܾ௘௤,௝൩
+ ேାଵߤ ൭෍ ෍෍ݖ௜௠௞ = 1௄

௞ୀଵ
ே
௜ୀଵ

ெ
௠ୀଵ − ܾ௘௤,ேାଵ൱ + 

෍ߤேାଶ,௝ே
௝ୀଵ ൥൭෍෍[ߜ௟௠ − ௜௟௞௄ݖ[௜|௠ݍ

௞ୀଵ
ெ
௟ୀଵ ൱ − ܾ௘௤,ேାଵା௝൩ 

 
3.2.Transaction costs 
Let us consider  ߙ = and let  ࣛ௔ௗ௠  (௜௠௞ݖ)݈݋ܿ = ܼ௔ௗ௠. Each  ߙ௜  reprents 

current portfolio holding of asset. Each time an investor buys or sells an asset an expense 
is incurred. We study the case where the transaction cost to move from one asset to a 
better one is penalized by a cost. In the work of Markowitz, the expenses associated with 
trading equities, were excluded from his model. The importance of considering the 
transaction cost in a new portfolio and in revising an existing portfolio are well 
acknowledged. Transaction cost should be as low as possible. Thus, a portfolio manager 
must carefully consider trading and its resulting cost. 
We will define the behavior of an investor as a sequence  (ߙ௡)௡∈ℕ  where there are 
possible changes in the assets, such that  ߙ௝ ≠ ௝ߙ  ,௜  or holding the same assetߙ =   ௜ߙ
in order to maximize the utility and minimize the risk of the portfolio. We also consider 
problems with transaction costs where the costs are paid on all transactions irrespective 
of the volume of the transaction. They consist of brokerage commissions and transfer 
fees. Then, at each step  ݊ ∈ ℕ  the investor chooses to change or to stay in  ߙ௜ ∈ ࣛ . 
The function  ߰  represents the function which determines the decision to change asset  ߙ௜ . The change from an asset to a different one produces a transaction cost, which can 
be defined as a function  ߮  :   ࣛ ×ࣛ → ℝ  which can interpreted as a distance 
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function where if  ߮(ߙ௜, (௝ߙ = ,௜ߙ)ܿ ,௜ߙ)ܿ  ௝)  we have thatߙ (௝ߙ = 0  if  ߙ௝ =   ௜ߙ
or  ܿ(ߙ௜, (௝ߙ > 0  if  ߙ௜ <  ௝ . In the classical model for transaction costs is that thereߙ
are none, i.e.,  ܿ(ߙ௜, (௝ߙ = 0 . Then, the function  ߮(ߙ௜, ,௜ߙ)߮  ௝)  can be reexpressed asߙ (௝ߙ = ,௜ߙ)ܿ(௜ߙ)ߜ (௜ߙ)ߜ  ௝)  whereߙ ∈ [0,1]  is the costs for each transaction 
proportional to the distance to move from  ߙ௜  to  ߙ௝  and  ܿ(ߙ௜,  ௝)  is the one-stepߙ
cost function. 
The case  ߰(ݔ௜) − (௝ݔ)߰ ≥ 0  is the advantage to change from  ߙ௜   to  ߙ௝   and  ߞ(ߙ௜)  is the weight the investor puts on his advantages to change from a given asset to 
another. The advantages to change from  ߙ௜   to  ߙ௝   are given by  ߙ)ߌ௜, (௝ߙ (௜ߙ)൫߰(௜ߙ)ߞ= −  . ൯(௝ߙ)߰
If any number of convex transaction costs and convex constraints are combined, the 
resulting problem is convex. Linear transaction costs, as well as all the portfolio 
constraints describe above, are convex. Such problems can be solved with great 
efficiency, even for problems with a large number of assets and constraints. We have 
that the general portfolio problem with transaction cost can be defined by ߖ(ߙ௜) = ൛ߙ௝ ∈ ࣛ  : (௜ߙ)൫߰(௜ߙ)ߞ   − ൯(௝ߙ)߰ ≥ ,௜ߙ)ܿ(௜ߙ)ߜ  ௝)ൟߙ
Then, the acceptance criterion to change or stay in the same process satisfies the 
condition  ߞ(ߙ௡)(߰(ߙ௡) − ((௡ାଵߙ)߰ ≥ ,௡ߙ)ܿ(௡ߙ)ߜ  (௡ାଵߙ
After that, considering 
௡ߙ   = ߙ ,ߙ)ܿ(ߙ)ߜ  ,  (∗ߙ = ߙ)‖௡ߜ − ଶ‖(∗ߙ   and  ߙ)ߌ, =:(∗ߙ (ݔ)߰]௡ߞ− −   [(∗ݔ)߰
we obtain ߙ∗ = argmaxఈ∈ࣛ ߙ)‖௡ߜ−} − ଶ‖(∗ߙ + (ݔ)߰](ߙ)௡ߜ)௡ߛ −  {([(∗ݔ)߰
 

4.Numerical example 
4.1.Description of the example 
We suppose that a portfolio containing all risky assets and can be calculated by 

considering the sum of the risk-free rate plus the excess return (market return minus 
risk-free rate) multiplied by ߦ , the sensitivity of the portfolio to market movements  (݋)ߖ:= (݋)࣯ − 2ߦ (݋)ݎࣰܽ	 → ࣩ∋௢ݔܽ݉	  

where ߦ is the risk-aversion parameter [3]. 
We assume that investors target the portfolio with the lowest risk over the same 
one-period horizon and anticipate returns with the same probability distribution. We 
believe that the markets are in equilibrium and that there has been no inflation or change 
in interest rates. To make trading more realistic, we take into account transaction costs 
and the fact that investors can trade an unlimited number of shares on an arbitrage-free 
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݉∗݅݋ = ێێۏ
0.0214ۍێێ 0.0354 0.0238 0.0398 0.0002 0.04770.0287 0.0353 0.0099 0.0458 0.0283 0.02120.0584 0.0172 0.0252 0.0270 0.0056 0.03620.0403 0.0369 0.0010 0.0042 0.0552 0.02900.0196 0.0315 0.0183 0.0242 0.0338 0.03200.0269 0.0238 0.0153 0.0473 0.0052 ۑۑے0.0486

ېۑۑ ∗݉|݇ߨ = ێێۏ
0.4158ۍێێ 0.58420.1927 0.80730.6100 0.39000.5792 0.42080.6434 0.35660.2862 ۑۑے0.7138

 ېۑۑ
 

∗݅|݉ݍ = ێێۏ
0.1272ۍێێ 0.1695 0.3445 0.2419 0.1229 0.16090.2103 0.2089 0.1013 0.2218 0.1973 0.14250.1413 0.0583 0.1485 0.0063 0.1149 0.09150.2363 0.2709 0.1594 0.0249 0.1521 0.28310.0012 0.1671 0.0331 0.3312 0.2123 0.03120.2837 0.1253 0.2133 0.1739 0.2005 ۑۑے0.2909

ېۑۑ ݉∗݌ = ێێۏ
ۑۑے0.19520.18010.09350.18830.12830.2146ۍێێ

 ېۑۑ
 
Figure 1 shows the convergence of the utility, Figure 2 shows the variance and Figure 3 
shows the convergence of the functional. Figure 4 shows the convergence of the 
portfolio strategies.  
 

4.3.Computing the efficient frontier 
The main goal of the investor is to gain a given return. A rational investor makes 

an effort to identify the portfolio with minimal risk which satisfies this goal. For 
fulfilling this goal, we outline all the possible portfolios of risky assets in a 
mean-variance diagram, where the points represent the expected returns  ࣯  and the 
risk  ࣰܽݎ   (variance) of the portfolios. Furthermore, we call the set of all points  ࣰܽ(∗݋)ݎ =  the efficient frontier and has the shape of a hyperbola (Pareto front  (∗݋)࣯
[6]) see Figure 5. 
A portfolio is called mean-variance efficient (or just efficient), if for a given volatility 
there is no portfolio with a higher return such that  ࣯(݋∗) ≤ (∗݋)ݎࣰܽ  and  (݋)࣯  It is the upper boundary of all portfolios in the mean-variance diagram from .(݋)ݎࣰܽ≤
Figure 5. According to our paradigm, the rational investor is specifically seeking the 
following set of portfolios: They both increase the expected return while minimizing the 
risk for a given return. 
The portfolio on the efficient frontier with the lowest volatility is called 
minimum-variance portfolio (red circle in Figure 6). If a risk-free asset exists (zero 
volatility) then the set of mean-variance efficient portfolios, established by the risk-free 
and risky assets, is the tangency point on the efficient frontier (blued circle in Figure 6). 
Considering  ߦ = 5.5 × 10ିହ  and  ߛ = 1.3 × 10ିଷ  and the resulting values for the  
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∗݅|݉ݍ = ێێۏ
0.0013ۍێێ 0.5264 0.6966 0.0012 0.9948 0.45050.2436 0.0013 0.2984 0.0012 0.0010 0.00130.4716 0.0013 0.0012 0.5599 0.0010 0.54450.0013 0.0013 0.0012 0.0012 0.0010 0.00130.0013 0.0013 0.0012 0.0012 0.0010 0.00130.2810 0.4686 0.0012 0.4355 0.0010 ۑۑے0.0013

ېۑۑ ݉∗݌ = ێێۏ
ۑۑے0.45900.08690.25760.00120.00120.1941ۍێێ

 ېۑۑ
 

Figure 7 shows the convergence of the portfolio strategies. 
  

5.Conclusion and future work 
Financial market research has grown in importance as a result of the use of 

advanced mathematical techniques in decision-making. The significance of using the 
right modeling policy to address the portfolio optimization problem has expanded due to 
the rapidly expanding variety of financial assets. 
A Markovian model of the financial market was presented. A brief explanation of the 
model was followed by a solution to the problem of incomplete information. We take 
into account a one-period model in which trading in securities occurs in discrete time 
increments. Securities are traded by investors, who track their short-term pricing. We 
assumed that the market does not permit short selling, that all assets have equal selling 
and purchasing prices, that there are expenses associated with trading, and that investors 
can transact in an infinite number of shares on an arbitrage-free market. The use of 
partially observed Markov chains has been used to resolve all of these problems. 
Within the parameters of the study, we introduced a unique method for partially 
observed Markov chains based on observer design. As far as we are aware, this is the 
first piece of work that demonstrates how to create an observer for missing data. The 
product of the observer and distribution vector was added as a new variable. To get the 
necessary variables, we developed the equations. The resultant ݍ௠|௜, is a non-trivial 
solution to the portfolio optimization issue and is regarded as the manager's intuition 
during the decision-making process. In many decision-making processes related to 
strategic management, intuitive rationality is seen as being crucial. 
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